ho 4 volte l'età che avevi quando avevo l'età che hai. Ho 40 anni, quanti ne hai?
25
Bastava risolvere il sistema delle 2 semplici equazioni:
40= 4y
x-y = 40-x
dove x è l'incognita da trovare e y l'età che aveva il ragazzo prima
Posto che X sia l’età da trovare, ho pensato che gli anni che intercorrono, a ritroso, tra 40 e X sono gli stessi che intercorrono tra X e 10.
Quindi X è il valore medio tra 10 e 40.
Dunque, 40+10=50/2=25
Sistema di 3 equazioni:
1) 10 + t = età tua ora
2) Età mia prima + t = eta mia ora = 40
3) Età tua ora = età mia prima
Risolvendo:
t = 15
Sostituendo alla 1):
10 + 15 = 25 = età tua ora
Oggi il maestro ha 40 anni, poi diciamo che quando lo studente aveva 10 anni (1/4 di 40) il maestro aveva la stessa età che ha oggi lo studente. Se lo leggiamo in questo modo diviene più facile. quindi possiamo dire che la differenza di età tra il maestro e l'alunno deve essere costante ovvero 40 -x oggi equivale a x-10 quando lo studente aveva 10 anni. Da cui abbiamo che se la distanza di età tra i due non cambia abbiamo 40 -x = x-10 da cui 2x= 50 e quindi l'età dello studente è 25 anni.
La differenza di età è sempre la stessa. Se indichiamo con a l'età attuale dell'allievo risulta pertanto 40 - a = a - 10. Ne segue facilmente a = 25
40-2*differenza di età=10; differenza di età =15; 40-15=25